CSSE 220 Day 7

Game of Life hints and Designing Classes

Check out Des/gn/ngC/as.ses project from SVN



Game of Life hints:

» Follow the TODOQO’s. T7est as frequently as practical.
- If a part is hard, break it down into sub-parts and test each
sub-part as you go.

» There are at least 3 clever ways to avoid cluttering
code that references cells with IF’s to ensure that

they are not “off the edge of the board”, namely:

- “Wrap”. For example, if the board is 10x10, attempts to reference
board[10][3] are converted to board[0][3] (use the % operator).

- Write a “getter” that gets the value of a cell and returns a sensible
value (0?) if the reference is off the edge of the board. Ditto for a
“setter” if needed.

> Fora 10x10 board, declare a 12x12 board and make the outer shell

all empty cells. You will find that you never make them non-empty

(loop from 1 to 10, not O to 11), so all is well.



Animating Game of Life

» How: use Timer class to automatically “click”
button

» Details: in GameOfL1feMain:

- Use local variable for UpdateButton object
- Add timer code to end of main to repeatedly click
button at regular intervals:

« Timer mrClicker =

new Timer (INTERVAL, updateButton);
mrClicker.start();

» Learn more: Big Java, Ch. 9.9



Work Time

» Game of life due 11:55 on day of next class

» Work with your partner
on the Game of Life project

- Get help as needed

Before you leave today, make sure that you and your partner have
scheduled a session to complete the Game of Life project
* Where will you meet?

 Try the CSSE lab F-217/225

* When will you meet?

» Consider this evening,
7 to 9 p.m. Exchange contact info in case one of you needs to reschedule.

* Do it with your partner. If your partner bails out, DON'T do it alone until you communicate

with your instructor.




Questions?







Good Classes Typically

» Come from nouns in the problem description
» May...

- Represent single concepts

« Circle, Investment

Represent visual elements of the project

- FacesComponent, UpdateButton

Be abstractions of real-life entities

- BankAccount, TicTacToeBoard

Be actors

« Scanner, CircleViewer

Be utility classes that mainly contain static methods
- Math, Arrays, Collections

o

o}

o

o




What Stinks? Bad Class Smells*

» Can’t tell what it does from its name
o PayCheckProgram

Function
objects are an

» Turning a single action into a class |exception.

> ComputePaycheck Their whole
purpose is to

contain a single
» Name isn’t a noun computation

o Interpolate, Spend

*See http://en.wikipedia.org/wiki/Code smell
http://c2.com/xp/CodeSmell.html



http://en.wikipedia.org/wiki/Code_smell
http://c2.com/xp/CodeSmell.html
http://c2.com/xp/CodeSmell.html
http://c2.com/xp/CodeSmell.html

Analyzing Quality of Class Design

» Cohesion

» Coupling

p—



Cohesion

» A class should represent a single concept

» Public methods and constants should be
cohesive

» Which is more cohesive?

CashRegister CashRegister

double NICKEL_VALUE void add(ArrayList<Coin> coins)
double DIME_VALUE
double QUARTER_VALUE

void add(int nickels, int :
dimes, int quarters) Coin

double getValue()




Dependency Relationship

» When one class requires another class to do
its job, the first class depends on the second

» Shown on UML CashRegister

diag rams as. void add(ArrayList<Coin> coins)
- dashed line

> with open arrowhead

Coin

. double getValue()




Coupling

» Lots of dependencies == high coupling
» Few dependencies == low coupling

"*- -
-
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» Which is better? Why?

p—




Quality Class Designs

» High cohesion

» Low coupling




Accessors and Mutators Review

» Accessor method: accesses information
without changing any

» Mutator method: modifies the object on
which it is invoked




Immutable Classes

» Accessor methods are very predictable
- Easy to reason about!

» Immutable classes:
- Have only accessor methods
- NOo mutators

» Examples: String, Double

» Is Rectangle immutable?




Immutable Class Benefits

» Easier to reason about, less to go wrong

» Can pass around instances “fearlessly”




Side Effects

» Side effect: any modification of data

» Method side effect: any modification of data
visible outside the method
- Mutator methods: side effect on implicit parameter

> Can also have side effects on other parameters:
* public void transfer(double amt, Account other)

1

this.balance -= amt;
other.balance += amt;

Avoid this if you can!



Quality Class Designs

» High cohesion

» Low coupling

» Class names are nouns
- Method names are verbs

» Immutable where practical
- Document where not

Inheritance for code reuse

Interfaces to allow others to interact with your
code

Coming attractions









What is static Anyway?

» static members (fields and methods)...

- are not part of objects
- are part of the class itself

» Mnemonic: objects can be passed around, but
static members stay put




Static Methods

» Cannot refer to this
- They aren’t in an object, so there is no this!

» Are called without an implicit parameter
o Math.sqrt(2.0)

/[

Class name, not object

reference

- Inside a class, the class name is optional but much clearer to
use (just like this for instance fields and methods)




When to Declare Static Methods

» The main() method is static
- Why is it static?
- What objects exist when the program starts?




When to Declare Static Methods

» Helper methods that don’t refer to this
- Example: creating list of Coordinates for glider

» Utility methods like s/r7and cos that are not
associated with any object

- Another example:

public class Geometry3D {
public static double spherevVolume(double radius) {

}




Static Fields

» We've seen static final fields

» Can also have static fields that aren’t final
> Should be private

- Used for information shared between instances of a
class

- Example: the number of times a particular method of
the a class is called by ANY object of that class




Two Ways to Initialize

» private static int nextAccountNumber = 100;

» or use “static initializer” blocks:

public class Hogwarts {
private static ArrayList<String> FOUNDERS;

static {
FOUNDERS = new ArrayList<String>();
FOUNDERS.add(*"Godric Gryfindor™™);
// ...




A Polygon exercise

» Run the program in the polygon package
» Read all the TODO’s in the Polygon class

» Do and test the TODQO’s for most number of
sides, asking questions as needed

» Do and test the TODQ’s for least number of
sides

* You might find the constant Integer.MAX_VALUE
helpful
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