CSSE 220 Day 7

Game of Life hints and Designing Classes

Check out Des/gn/ngC/as.ses project from SVN

Game of Life hints:

» Follow the TODOQO’s. T7est as frequently as practical.
- If a part is hard, break it down into sub-parts and test each
sub-part as you go.

» There are at least 3 clever ways to avoid cluttering
code that references cells with IF’s to ensure that

they are not “off the edge of the board”, namely:

- “Wrap”. For example, if the board is 10x10, attempts to reference
board[10][3] are converted to board[0][3] (use the % operator).

- Write a “getter” that gets the value of a cell and returns a sensible
value (0?) if the reference is off the edge of the board. Ditto for a
“setter” if needed.

> Fora 10x10 board, declare a 12x12 board and make the outer shell

all empty cells. You will find that you never make them non-empty

(loop from 1 to 10, not O to 11), so all is well.

Animating Game of Life

» How: use Timer class to automatically “click”
button

» Details: in GameOfL1feMain:

- Use local variable for UpdateButton object
- Add timer code to end of main to repeatedly click
button at regular intervals:

« Timer mrClicker =

new Timer (INTERVAL, updateButton);
mrClicker.start();

» Learn more: Big Java, Ch. 9.9

Work Time

» Game of life due 11:55 on day of next class

» Work with your partner
on the Game of Life project

- Get help as needed

Before you leave today, make sure that you and your partner have
scheduled a session to complete the Game of Life project
* Where will you meet?

 Try the CSSE lab F-217/225

* When will you meet?

» Consider this evening,
7 to 9 p.m. Exchange contact info in case one of you needs to reschedule.

* Do it with your partner. If your partner bails out, DON'T do it alone until you communicate

with your instructor.

Questions?

Good Classes Typically

» Come from nouns in the problem description
» May...

- Represent single concepts

« Circle, Investment

Represent visual elements of the project

- FacesComponent, UpdateButton

Be abstractions of real-life entities

- BankAccount, TicTacToeBoard

Be actors

« Scanner, CircleViewer

Be utility classes that mainly contain static methods
- Math, Arrays, Collections

o

o}

o

o

What Stinks? Bad Class Smells*

» Can’t tell what it does from its name
o PayCheckProgram

Function
objects are an

» Turning a single action into a class |exception.

> ComputePaycheck Their whole
purpose is to

contain a single
» Name isn’t a noun computation

o Interpolate, Spend

*See http://en.wikipedia.org/wiki/Code smell
http://c2.com/xp/CodeSmell.html

http://en.wikipedia.org/wiki/Code_smell
http://c2.com/xp/CodeSmell.html
http://c2.com/xp/CodeSmell.html
http://c2.com/xp/CodeSmell.html

Analyzing Quality of Class Design

» Cohesion

» Coupling

p—

Cohesion

» A class should represent a single concept

» Public methods and constants should be
cohesive

» Which is more cohesive?

CashRegister CashRegister

double NICKEL_VALUE void add(ArrayList<Coin> coins)
double DIME_VALUE
double QUARTER_VALUE

void add(int nickels, int :
dimes, int quarters) Coin

double getValue()

Dependency Relationship

» When one class requires another class to do
its job, the first class depends on the second

» Shown on UML CashRegister

diag rams as. void add(ArrayList<Coin> coins)
- dashed line

> with open arrowhead

Coin

. double getValue()

Coupling

» Lots of dependencies == high coupling
» Few dependencies == low coupling

"*- -
-

i« L

.i

» Which is better? Why?

p—

Quality Class Designs

» High cohesion

» Low coupling

Accessors and Mutators Review

» Accessor method: accesses information
without changing any

» Mutator method: modifies the object on
which it is invoked

Immutable Classes

» Accessor methods are very predictable
- Easy to reason about!

» Immutable classes:
- Have only accessor methods
- NOo mutators

» Examples: String, Double

» Is Rectangle immutable?

Immutable Class Benefits

» Easier to reason about, less to go wrong

» Can pass around instances “fearlessly”

Side Effects

» Side effect: any modification of data

» Method side effect: any modification of data
visible outside the method
- Mutator methods: side effect on implicit parameter

> Can also have side effects on other parameters:
* public void transfer(double amt, Account other)

1

this.balance -= amt;
other.balance += amt;

Avoid this if you can!

Quality Class Designs

» High cohesion

» Low coupling

» Class names are nouns
- Method names are verbs

» Immutable where practical
- Document where not

Inheritance for code reuse

Interfaces to allow others to interact with your
code

Coming attractions

What is static Anyway?

» static members (fields and methods)...

- are not part of objects
- are part of the class itself

» Mnemonic: objects can be passed around, but
static members stay put

Static Methods

» Cannot refer to this
- They aren’t in an object, so there is no this!

» Are called without an implicit parameter
o Math.sqrt(2.0)

/[

Class name, not object

reference

- Inside a class, the class name is optional but much clearer to
use (just like this for instance fields and methods)

When to Declare Static Methods

» The main() method is static
- Why is it static?
- What objects exist when the program starts?

When to Declare Static Methods

» Helper methods that don’t refer to this
- Example: creating list of Coordinates for glider

» Utility methods like s/r7and cos that are not
associated with any object

- Another example:

public class Geometry3D {
public static double spherevVolume(double radius) {

}

Static Fields

» We've seen static final fields

» Can also have static fields that aren’t final
> Should be private

- Used for information shared between instances of a
class

- Example: the number of times a particular method of
the a class is called by ANY object of that class

Two Ways to Initialize

» private static int nextAccountNumber = 100;

» or use “static initializer” blocks:

public class Hogwarts {
private static ArrayList<String> FOUNDERS;

static {
FOUNDERS = new ArrayList<String>();
FOUNDERS.add(*"Godric Gryfindor™™);
// ...

A Polygon exercise

» Run the program in the polygon package
» Read all the TODO’s in the Polygon class

» Do and test the TODQO’s for most number of
sides, asking questions as needed

» Do and test the TODQ’s for least number of
sides

* You might find the constant Integer.MAX_VALUE
helpful

	CSSE 220 Day 7
	Game of Life hints:
	Animating Game of Life
	Work Time
	Questions?
	What is good�object-oriented design?
	Good Classes Typically
	What Stinks? Bad Class Smells*
	Analyzing Quality of Class Design
	Cohesion
	Dependency Relationship
	Coupling
	Quality Class Designs
	Accessors and Mutators Review
	Immutable Classes
	Immutable Class Benefits
	Side Effects
	Quality Class Designs
	Class Design Exercise
	Static
	What is static Anyway?
	Static Methods
	When to Declare Static Methods
	When to Declare Static Methods
	Static Fields
	Two Ways to Initialize
	A Polygon exercise
	Work Time

